Salmonella infections and vaccines

P. A. Barrow
Institute for Animal Health,
Compton,
Newbury,
Berkshire RG20 7NN
United Kingdom

Introduction

Over the last few years the animal and public health problems associated with Salmonella in poultry have increased to the extent that they have become major political issues of which the general public have become very aware. S. enteritidis, particularly, has become a world-wide problem, arising probably mainly in poultry [Rodrigue et al., 1990]. In many countries individual phage types of this serotype have replaced S. typhimurium as the most dominant type in poultry and man. Control in poultry has become a major issue and immunity, whether acquired or, more speculatively, innate, is seen as a possible means of containing the problem. Widespread usage of antibiotics has led to the emergence of multiple antibiotic resistant bacteria including S. typhimurium. This problem has indicated to the industry and government agencies an increasing requirement for effective vaccines to control this important zoonotic infection.

An attempt is made in this review to explain the relatively poor success in immunising food animals against these host non-specific Salmonella serotypes that usually produce food-poisoning compared with the success obtained with the small number of serotypes that more typically produce systemic "typhoid-like" diseases in a restricted range of host species. Most of our understanding of immunity to salmonellosis arises from experimental work with typhoid-like diseases, usually S. typhimurium infection in mice. Such work may not be entirely relevant to the, largely disease-free, colonisation by most Salmonella serotypes. Whereas live, attenuated vaccines against host-specific serotypes are highly protective, similarly developed vaccine strains have traditionally been less effective in protecting chickens, calves and pigs against intestinal colonisation. Newer methods of attenuation are being developed which are being exploited. Their success will depend on appropriate attenuation and delivery and on their use for infection types which have been shown to be amenable to immune control. However, from the point of view of consumer safety there is a school of thought that considers inactivated or sub-unit vaccines to be the safest. The benefits of developing effective killed or sub-unit vaccines over the use of live vaccines are enormous. Recently there have been significant advances in the development of adjuvants, for example microspheres, that are capable of potent immuno-stimulation, targeting different arms of the immune system. The exploitation of such technology in conjunction with the ongoing developments in identifying key Salmonella virulence determinants should form the next generation of Salmonella sub-unit vaccines for the control of this important group of pathogens.

Pathogenesis of Salmonellosis

The development of an effective vaccine is dependant on an understanding of how Salmonella organisms infect their hosts and the host response to infection. A major problem with this goal is that Salmonella pathogenicity is both Salmonella serotype and host dependant and that the factors influencing serotype-host specificity are not known. [see relevant chapters on virulence]
From the point of view of pathogenesis the *Salmonella* genus can be divided into two major groups. One group typically produces systemic disease and is rarely involved in human food-poisoning, while the other typically produces food-poisoning and only produces systemic disease under particular circumstances, such as during parturition, in lay, in very young or old animals, or after some viral infections. A comparison of the biological aspects of the two groups might explain our success in immunological control of the former group and limited success in control of the latter. It might also contribute to our understanding of the immune responses to infection. It is obviously central to any appraisal of experimental work on pathogenesis and immunity that like is compared with like.

Our current understanding of *Salmonella* pathogenesis and immunity is largely derived from experimental infection studies in inbred laboratory strains of mice, generally with *S. typhimurium*. This type of infection is characteristic of a small number of serotypes that characteristically produce this severe systemic disease, initially involving the reticuloendothelial system in a restricted number of host species. Following inoculation of mice with an infective dose, a systemic infection occurs without enteritis. Thus mice are only a useful model for studying the systemic form of disease. The severity of the infection is dependant on the virulence of the *Salmonella* strain, the route of infection, the innate resistance of the mouse strain in use and its immune status. Similar information on *S. dublin* in cattle or *S. gallinarum* in poultry is much less complete.

The second group comprises the remaining 2000 or so serotypes. They are not restricted to particular host species and their epidemiology can therefore be complex. Most are able to colonise the alimentary tract of animals without production of disease. Extensive carcass contamination at slaughter can result in *Salmonella* organisms entering the human food chain. Some strains of particular serotypes, most notably *S. typhimurium* and *S. enteritidis*, are capable of producing clinical disease under certain circumstances. This is particularly the case for young chickens, calves or piglets or during or after a period of physiological stress, such as after calving, during lay, after liver fluke infection or in cold wet weather. In these cases a systemic disease, again initially involving the reticuloendothelial system, occurs in addition to faecal excretion. The extent of disease and mortality varies according to the strain but with serotypes such as these there is always some invasion of the intestinal mucosa and reticuloendothelial system.

IMMUNITY TO SALMONELLA

Immune reponses to *Salmonella* depend on the host species and the *Salmonella* serotype infecting the host. Serotypes that usually induce a self-limiting gastroenteritis in a broad range of unrelated host species, while being capable of inducing systemic disease in a wide range of host animals, are called un-restricted or broad host-range serotypes. Host-restricted serotypes, such as *S. Gallinarum* in poultry, have a totally different pathogenesis. These bacteria cause a severe systemic infection which may result in death of the animal. The pathogenesis of *S. Gallinarum* is characterized by a spread throughout the body and severe clinical disease with little intestinal involvement. Most data concerning immunity to *Salmonella* are derived from *S. Typhimurium* infection of mice, what is in fact a model of typhoid-like infections. It is therefore not always pertinent to extrapolate this information to non-host-specific *Salmonella* infections of poultry, such as *S. Enteritidis* infections. In the discussion below data on immunity of mice are given since this is best understood, followed by available data on poultry immunity where this is known.

It is widely accepted that cell-mediated immunity is more important than humoral responses in protection against *Salmonella* [Collins, 1974; Mastroeni et al., 1993] although most of these studies come from *S. Typhimurium* infection in mice where a typical typhoid-
like infection is produced and how far this is true for disease-free gut colonisation is unclear. In mice, Th1 cytokines, which enhance cell-mediated responses, are crucial for protective immunity against a primary Salmonella infection [Raupach & Kaufmann, 2001; Eckmann & Kagnoff, 2001]. Evidence for the importance of Th1 responses comes from experiments using IFN-γ receptor knockout mice and mice with neutralizing antibodies to IL-12, which are unable to resolve infection by an attenuated Salmonella strain, in contrast to mice lacking class-I-restricted T cells, γδ T cells or Ig producing B-cells, that are able to clear the infection [Hess et al., 1996; Sinha et al., 1997; Mastroeni et al., 1998]. Moreover, in mouse typhoid, protective roles have been shown for IL-1α, TNFα, IFN-γ, IL-12, IL-18 and IL-15, whereas IL-4 and IL-10 inhibit host defenses against Salmonella, again pointing to the importance of the Th1 response in control of Salmonella [Eckmann & Kagnoff, 2001]. In Igµ−/− knockout mice, lacking B-lymphocytes, it has been shown that control of primary infection with avirulent Salmonella vaccine strains depends strictly on IFN-γ-producing CD4+ T-cells, whereas vaccine-induced protection against infection involves both cell-mediated and humoral responses, the latter in the later stages of infection [McSorley & Jenkins, 2000; Mastroeni et al., 2000a; Mitttrucker et al., 2000; Mastroeni & Menager, 2003]. Both cellular and humoral immune responses are stimulated by intra-peritoneally administered heat killed and live Salmonella vaccines in mice, the difference being the stimulation of Th1 or Th2 responses, which either direct B cells to switch to IgG2a via live organism stimulation of Th2/IL-4, or switching to IgG1 following stimulation of IFN-γ producing Th1 cells by killed Salmonella [Thatte et al., 1995; Ib 1993]. IFN-γ has been found to be essential for reactive oxygen species-mediated killing of virulent Salmonella, although not essential for killing of avirulent vaccine strains [Foster et al., 2003].

In contrast to mice, little is known about immune responses to virulent and attenuated Salmonella strains in poultry. It is not possible to assess the role of Th1 relative to Th2 immune responses, since there are, so far, no published studies involving Th2 cytokines. However, an important role of early CD8+ T cells as a representative population of cell-mediated immunity was shown after primary Salmonella infection in young chicks [Berndt & Methner, 2001]. It is proposed that cell-mediated immunity is more important than humoral responses for tissue clearance of virulent strains in poultry, while IgA responses and polymorphonuclear leukocytes seem to be the key players in intestinal clearance of Salmonella although this has not been proved experimentally and the evidence is confusing [Nagaraja & Rajashekara, 1999]. Clearance of S. Typhimurium infection in chickens correlates with high cell-mediated responses (delayed type hypersensitivity reaction) and not with high antibody levels [Lee et al., 1981; Ib 1983]. In contrast, a study of Desmidt et al. [1998b] with S. Enteritidis infected, bursectomized chickens showed that B-cell depleted chickens have increased faecal excretion and higher caecal Salmonella counts, while having normal counts in internal organs, indicative of a protective effect of IgA against intestinal colonization. Colonization of liver and spleen decreased over time in control as well as in bursectomized animals, indicating that other immune mechanisms play a role in systemic clearance of S. Enteritidis in chickens [Desmidt et al., 1998b]. The importance of cell-mediated immune mechanisms in systemic clearance of S. Enteritidis in chickens was recently investigated by Farnell et al. [Farnell et al., 2001]. In this study, intraperitoneal administration of recombinant IFN-γ resulted in a decrease in organ colonization after oral S. Enteritidis infection.

Finally, in mice it has been shown that polymorphonuclear cells play an important role in resistance to Salmonella infections [Fierer, 2001; Hargis et al., 1999]. In chickens heterophilic granulocytes accumulate in the propria mucosae of the caeca within 18 hours following experimental infection with a Salmonella Enteritidis field strain [vanImmerseel et al., 2002c]. Infection with S. Typhimurium this is accompanied by acute enteropathogenic responses characterised by expression of CXC chemokines and a PMN influx [Withanage et al., 2004].
In response to *S. Enteritidis*, heterophils have been shown to up-regulate mRNA expression for pro-inflammatory chemokines IL-6 and IL-8 as well as the anti-inflammatory cytokine TGF-beta 4, whereas expression of IL-18 and IFN-γ was down-regulated [Kogut et al., 2003]. The bacterial factors that are responsible for this affect have not been fully elucidated but in mice appear to include secreted effector proteins such as SopA, B and D [Wood et al., 2000], SipA [Lee et al., 2000] and the flagella protein FliC and probably FljB [Gewirtz et al., 2001; Hayashi et al., 2001; Reed et al., 2002]. However, differences occur between different serovars, since the avian typhoid serovar *S. Gallinarum* down-regulates induction of IL-1 and IL-6 in avian epithelial cells [Kaiser et al., 2000]. There has been considerable discussion about the contribution to enteropathogenicity of PMN influx but there is now evidence that this does not contribute directly [Foster et al., 2003].

Granulocytopenic (heterophil-depleted) chickens are much more susceptible to *S. Enteritidis* organ invasion, with the increase in bacterial number in the internal organs being proportionally related to the decrease in number of circulating PMNs [Kogut et al., 1993; Ibid 1994]. Another result underlining the importance of chicken heterophils in protection against *Salmonella* organ invasion was the finding that intraperitoneal administration of *S. Enteritidis*-immune lymphokines (SE-ILK) to 18-week old chickens protected the animals from organ invasion by *S. Enteritidis* [hargis et al., 1999, Tellez et al., 1993b]. SE-ILK are soluble products produced by T-lymphocytes, derived from *S. Enteritidis*-immune hens, cultured in the presence of concanavalin A. Intraperitoneal administration of SE-ILK in chickens resulted in a dramatic increase in the number of heterophilic granulocytes into the peritoneum without changing the numbers of other leukocytes and administration in ovo protected young chicks against organ invasion by *Salmonella* [Kogut et al., 1995a; Kogut et al., 1995b]. Heterophil-depleted chickens showed a severe morbidity and mortality when a normally sub-lethal dose of *S. Enteritidis* was inoculated orally, further stressing the importance of heterophilic granulocytes [Kogut et al., 1993]. This studies indicate not only the importance of this aspect of the innate response to *Salmonella* infection but also suggest that the course of infections might be modulated by manipulation of these responses.

VACCINES AND ADAPTIVE IMMUNITY

Vaccination against host-specific *Salmonella* serotypes, causing severe systemic disease in a particular host species (*S. Gallinarum* in poultry), induces a strong serotype-specific protective immunity against infection and disease [Barrow & Wallis, 2000, Smith, 1956]. In contrast, vaccination against non host-specific *Salmonella* serotypes has yielded variable success rates. The two infection types display very different epidemiological pictures and patterns of pathogenicity which, together with the nature of the immune response to systemic and intestinal infections, may account for these differences. Host-specific serotypes cause systemic disease with involvement of the monocyte-macrophage series and generally little initial intestinal colonisation whereas the reverse is true for most of the serovars that are associated with entry into the human food chain causing food-poisoning [Barrow et al., 1994; Uzzau et al., 2000].

The efficacy of vaccine preparations is judged by the level of intestinal and systemic colonisation and morbidity and mortality rates after vaccination and experimental infection using the oral or parenteral routes of administration are examined. However, the level of protection depends on the challenge strain, the route of administration, the infection dose, age of birds and species/line of birds. Consequently it is difficult to compare strictly the efficacy of the vaccine preparations currently available.

Vaccination against host non-specific *Salmonella* serotypes has had varying success. As a result of public interest this has been a fruitful area for research over many years. A number
of reviews have appeared which summarise our knowledge and understanding up to 3-4 years ago [Barrow & Wallis, 2000; Meyer et al., 1992; Barrow, 1991; Zhang-Barber et al., 1999]. This is not the place to present a similar summary but rather to examine recent literature and to review current feeling on the use of different types of vaccine in poultry, which will have some relevance to their use in other food animals and for any consequences for their application in young animals to exploit the early effects covered by this review.

Killed vaccines have been used to control host non-specific Salmonella infections in poultry with very varying success. These have been used extensively as autologous vaccines and little information is available on their efficacy. Recent work [Timms et al., 1994; Liu et al., 2001] supports earlier observations that they may be used to reduce mortality, although this is of little practical significance in the field. The relevance of this decrease in mortality for colonisation of organs and shedding is also not clear since Salmonella infection in the field is mostly asymptomatic. Different experiments with killed vaccines report variable effects on faecal shedding and colonisation of the intestine and internal organs. Some work [McCapes et al., 1967; Truscott et al., 1972] supports earlier contentions that maternal vaccination with bacterins does not reduce significantly excretion of Salmonella in the progeny although mortality can be reduced. However, positive results have been reported. Single oral or intramuscular immunization with formalin-inactivated S. Enteritidis bacteria, encapsulated in biodegradable microspheres, at two weeks of age, decreased faecal shedding and organ colonisation of S. Enteritidis, after oral infection with 10⁹ cfu at 6 weeks of age [Liu et al., 2001]. Intravaginal vaccination with an oil-emulsion bacterin of S. Enteritidis at 38 weeks, followed by a booster 4 weeks later, reduced colonisation of the ovary and spleen and reduced faecal shedding of a S. Enteritidis challenge strain [Miyamoto et al., 1999]. After challenge, 36 of 189 eggs (19.0%) in the vaccinated hens were positive, and this contamination rate was significantly lower than that in the unvaccinated hens (61 of 165 eggs, 37.0%). By contrast, in a field trial in which autogenous bacterins were used for single or double immunization, ten layer flocks were vaccinated at different time intervals while one flock was left unvaccinated. The percentage of positive environmental samples and samples of internal organs of the vaccinated animals were not decreased relative to the animals of the unvaccinated flock [Davison et al., 1999].

A vaccine containing inactivated S. Enteritidis that was grown under iron-restricted conditions is available on the market in some European countries [Woodward et al., 2002]. Also a vaccine containing S. Enteritidis as well as S. Typhimurium, both grown under conditions of iron restriction, is also commercially available [Clifton-Hadley et al., 2002]. Iron-restriction is known to up-regulate bacterial factors that stimulate virulence and thus may stimulate important immunogens. However, given that the relevant genes are not up-regulated in macrophages [Eriksson et al., 2003] it might be more appropriate to produce the vaccines under the conditions experienced in that environment. The inactivated S. Enteritidis vaccine was efficient at decreasing egg contamination after intravenous challenge with S. Enteritidis [Woodward et al., 2002]. This work is difficult to evaluate and oral challenge might have been more relevant. However, the combined S. Enteritidis and Typhimurium vaccine, when given intramuscularly at day 1 and week 4, decreased shedding after oral challenge with S. Typhimurium in a seeder-bird challenge model [Clifton-Hadley et al., 2002]. Less than 30% of the vaccinated birds shed Salmonella bacteria, while at 10 days post-challenge, more than 80% of the unvaccinated animals shed Salmonella.

Subunit vaccines have also been used in poultry. Outer membrane protein vaccines with adjuvant have been used to decrease shedding of S. Enteritidis in poultry [Meenakshi et al., 1999]. Khan et al. [2003] immunized nine-week-old chickens with two outer membrane proteins subcutaneously, followed by two boost immunizations with time intervals of two weeks. These outer membrane proteins were shown to be involved in attachment of S.
Enteritidis to intestinal epithelial cell lines [Fadl et al., 2002]. Immunization of either of the outer membrane proteins decreased caecal colonisation about 1000-fold when the animals were infected orally with \(8 \times 10^8\) cfu of a virulent S. Enteritidis strain [Khan et al., 2003].

Attention has been paid to the development of avirulent vaccine strains of Salmonella because of the accumulation of evidence that such strains of Salmonella are more immunogenic in mice and in poultry than are killed or subunit vaccines [Collins, 1974; Zhang-Barber et al., 1999]. Live vaccines have been tested extensively in mice but also in poultry. Although a number of different live Salmonella strains have been tested for their efficacy in experimental or semi-field studies only a few are registered and commercially available for use in poultry in Europe. The commercially available live Salmonella Typhimurium and Salmonella Enteritidis vaccine strains are either auxotrophic double-marker mutants derived through chemical mutagenesis [Springer et al., 2000; Meyer et al., 1993] or developed on the basis of the principle of metabolic drift mutations [Vielitz et al., 1992; Hahn, 2000; Linde et al., 1997]. These are negative mutations in essential enzymes and metabolic regulatory centres as a consequence of which the resulting metabolic processes lead to prolonged generation times and corresponding reductions in virulence [Linde et al., 1997]. Some of these Salmonella live vaccines have been further characterised by molecular methods [Schwarz & Liebisch, 1994].

Another live vaccine registered for prophylactic use against Salmonella Enteritidis (which was developed initially for immunisation against S. Gallinarum) is the rough strain S. Gallinarum 9R [Smith, 1956; Barrow et al., 1991]. This vaccine strain has been tested more extensively in recent years since is has been shown to give cross protection against S. Enteritidis, a member of the same serogroup. The extent of cross protection against other serotypes, from either the same or other serogroups remains unclear. In a large field trial in the Netherlands in which 80 commercial flocks were vaccinated with the S. Gallinarum 9R vaccine strain, the flock level occurrence of S. Enteritidis infections was 2.5% (2/80 flocks). This was significantly less than the flock level occurrence of S. Enteritidis infections in unvaccinated flocks (214 out of 1854 flocks or 11.5%) [Feberwee et al., 2001a]. In 4500 eggs derived from 5 S. Gallinarum 9R vaccinated flocks, no vaccine strain bacteria were detected, while no evidence was found in another study for the faecal spread of the vaccine strain [Feberwee et al., 2002; Feberwee et al., 2001b].

Temperature sensitive spontaneous S. Enteritidis mutants, able to grow well at 28°C but not at 37°C, have been tested as vaccine strains in poultry [Cerquetti & Gherardi, 2000a; Ib 2000b]. When the mutant was orally inoculated (\(10^9\) cfu) in chickens at day 1, 2, 3 and 7 post-hatch and these animals were orally challenged at 7 or 14 days after the last vaccination with \(10^8\) cfu of strains of S. Enteritidis and Typhimurium, fewer challenge bacteria were recovered from the caecal contents, liver and spleen 14 days post-challenge [Cerquetti & Gherardi, 2000a]. An alternative vaccination scheme (\(10^9\) cfu at day 1 and two weeks post-hatch orally) also decreased shedding and colonisation of internal organs when the animals were challenged with \(10^9\) cfu of a virulent S. Enteritidis strain 14 days after the last oral immunization [Cerquetti & Gherardi, 2000b]. As with many studies, challenge occurred soon after vaccination and the vaccine strain was still present in the tissues of 54 and 28% of the animals at the time of vaccination. Experiments such as these may be partially explained by the non-specific effects covered later by this review and all work involving short periods between vaccination and challenge must take into account stimulation of innate responses [Maskell et al., 1987].

Numerous other live attenuated Salmonella vaccine strains have been developed by mutating genes involved in survival in host tissues. Genetic modification of the vaccine strain aims at reducing the risk of spread or persistence in the environment while at the same time inducing an adaptive immune response. It will be apparent (vide infra) that some of the
mutations chosen may have consequences for the colonisation inhibition effect inducible in the gut of young animals. The complete genome of *Salmonella* Typhimurium has been sequenced (www.genome.wustl.edu/projects/bacterial/styphimurium) and that for *S. Enteritidis* is now also complete (www.sanger.ac.uk/projects/Salmonella). This will facilitate the construction of completely rational mutations. Genes coding for metabolic functions or virulence factors are the main targets for producing safe vaccine strains. There is a certain rationale for inactivation of housekeeping genes which will reduce bacterial growth and virulence without greatly affecting the expression of key virulence determinants, required for appropriate immunogenicity [Klose & Mekalanos, 1997]. Double or even triple mutations can be introduced to increase safety by reducing the risk of reversion by acquisition of genes by horizontal transfer [Tacket et al., 1997; Methner et al., 2004]. Whichever mutations are made, it would seem crucial that the vaccine strains retain the capacity of invasiveness in order to stimulate sufficient immunity to be protective. At the same time the vaccine strain needs to be eliminated before slaughter age in broilers, and before onset of lay in layer and breeder chickens. A number of genes have been mutated for the construction of candidate vaccines, including those involved in the biosynthesis of bacterial lipopolysaccharide (*galE*), regulation of expression of outer membrane proteins (*ompR*), amino acid or purine biosynthesis (e.g. *aro, pur, guaB*), regulation of carbon source utilisation (*cya crp*), virulence factors and many others, such as *htrA, phoPQ, recA* and *waaN* [Mastroeni et al., 2000b]. Few mutants have been tested in poultry [Zhang-Barber et al., 1999], but the relevance of murine studies to poultry is questionable. For example, *phoP* mutants of *S. Typhimurium*, although poor presenters of antigens *in vitro* [Wick et al., 1995], are highly immunogenic in mice [Miller & Mekalanos, 1990; Hopkins et al., 1995], largely ascribed to their persistent infection of and efficient presentation by dendritic cells, as opposed to their poor survival in macrophages [Niedergang et al., 2000]. How well such strains survive in chicken cells is totally unknown. *AroA* mutants have been tested extensively in poultry and found to be effective, albeit less protective than the “gold standard” produced in chickens infected with a wild-type strain [Barrow et al., 1990; Cooper et al., 1990]. Given the general consensus that there is little cross-protection between serovars, it is not surprising that Parker *et al.* [Parker et al., 2001] found no significant differences in egg or reproductive tract infection when laying hens were vaccinated at day of hatch, 4 and 22 weeks with an *aroA* mutant of *S. Typhimurium* and challenged with *S. Enteritidis* 8 weeks after the final immunization.

Many of the characteristics and claims attributed to the *cya crp* mutant of *S. Typhimurium*, including the high level cross-protection, require confirmation and the mutant retains considerable virulence in gnotobiotic pigs [Barrow et al., 2001]. Dueger *et al.*, [2003] also made claims for cross-protection using *dam* mutants, although the degree of protection was fairly small. These studies also highlight the shortcomings of mutations which demonstrate attenuation in systemic infection but are not tested for their ability to induce gastro-enteritis. The exploration of the *sop* and other genes associated with Sip-dependent effector proteins [Wallis & Galyov, 2000] are a logical next stage in the creation of a truly rational vaccine.

The use of live attenuated *Salmonella* strains to deliver recombinant antigens to the immune system is an attractive additional strategy for the creation of multivalent vaccines for poultry. Multivalent vaccines would decrease the number of vaccinations in the field. Sustained expression of the heterologous antigen in the tissues in an immunogenic form at levels sufficient for priming a protective immune response is the main target when developing *Salmonella* recombinant vaccines [Mastroeni et al., 2000b]. Vaccination of chickens with a Δ *cya crp* mutant of *S. Typhimurium* expressing the *E. coli* O78 LPS O-antigens induced antibodies against the O78 LPS O-antigen and against *Salmonella*, and engendered a degree of protection against challenge with a pathogenic *E. coli* O78 strain [Roland et al., 1999]. Typhimurium vaccine strains were already used as antigen delivery system for oral
immunisation of chickens against two antigens of the coccidian parasite *Eimeria tenella* [Pogonka et al., 2003]. However, the delivery of antigens to the immune system is not sufficient per se to engender a protective response. A successful vaccination also requires the elicitation of an appropriate type of immune response. Thus different groups are working on the development of carrier-based vaccination strategy in order to promote the optimal immune response. For example, strains carrying mutations affecting the specific course of infection can be exploited to modify the immune response elicited [Drabner & Guzman, 2001; Dietrich et al., 2003] or the sub-cellular location of recombinant antigen in vaccine *Salmonella* strain may influence the type of the immune response [Kang & Curtiss, 2003]. In addition, the co-delivery of immune stimulatory molecules facilitates triggering a predictable response according to specific needs [Dunstan et al., 1996]. This type of work has, up to now, been performed only in mice. For example, Igwe *et al.* constructed a chimeric protein based on the *Yersinia* outer protein E (YopE) comprising the listerial antigens eliciting a cell mediated immune response [Igwe *et al.*, 2002]. In mice orally immunized with attenuated *Salmonella* vaccine strains expressing the chimeric YopE translocated by the type III secretion system, this novel vaccination strategy led to the induction of a pronounced cytotoxic CD8 T cell response that conferred some protective immunity [Russmann, 2004].

A significant development in the last few years involves the use of *Salmonella* vaccines for the delivery of DNA vaccines. Such vaccines may induce immunity against the *Salmonella* carrier, heterologous antigen(s) from a second *Salmonella* serotype or other pathogen [Darji *et al.*, 1997]. Consideration is being given to future modulation of the immune response by the co-expression of cytokines. A number of cytokines have been expressed in *Salmonella* vaccine strains, and some of which have been shown to have immunomodulatory effect, at least in mice [Dunstan *et al.*, 1996; Ianaro *et al.*, 1995].

LIVE VERSUS KILLED VACCINES

As stated above, most data on vaccine-induced protection are derived from mice studies and care should be taken in extrapolating these data to poultry. Killed vaccines can be efficacious in reducing *Salmonella* in poultry. Despite this, it is thought that live vaccines have advantages over killed vaccines, including stimulation of both cell-mediated and humoral immune arms and expression of all appropriate antigens *in vivo*, while the latter stimulate mainly antibody production and express only the antigens present at the time of *in vitro* harvesting [Collins, 1974; Barrow & Wallis, 2000]. Killed vaccines may also be destroyed rapidly and eliminated from the host, they may be poorly, immunogenic in unprimed hosts and unable to induce cytotoxic T cells [Nagaraja & Rajashekar, 1999]. Live vaccines have been shown to be more effective in increasing lymphocyte proliferation in response to *S. Enteritidis* antigens in laying hens [Babu *et al.*, 2003]. They also have additional protective effects, particularly when administered orally, which can be exploited during their development and application. These include (1) genus-specific colonisation inhibition (competitive exclusion) demonstrated to be primarily an effect of microbial metabolism and (2) the stimulation of primed PMNs in the gut (see below). Killed vaccines are unable to induce these effects. It seems unlikely at the moment that more-effective killed or sub-unit vaccines will be produced in the next few years because many basic questions relating to identification of the major protective immunogens and the nature of the immune response in the chicken, remain unanswered. Live vaccines have some disadvantages, including, perhaps most significantly, those associated with public acceptability. This is a major issue which should be addressed since the safety requirements are different for live vaccines than for inactivated vaccines.
The criteria for an ideal vaccine have been discussed previously [Barrow, 1999; Pritchard et al., 1978] and they include (1) effective protection against both mucosal and systemic infection, (2) attenuation for animals and man, (3) efficacy in reducing intestinal colonisation, and thus reduced environmental contamination, and egg infection (4) compatibility with other control measures and (5) cost-effective application. As indicated above, it is already possible to attenuate strains in a number of ways but inability to induce gastro-enteritis is not always evaluated. It should be possible in the next few years to produce live, attenuated strains which are immunogenic for poultry and other food animals but which maintain attenuation in man and other non target species. This will, by necessity, require molecular genetics as a tool. The alternative is that live, attenuated vaccines are produced, as currently, by undefined chemical mutagenesis with strains possessing a combination of uncharacterised lesions whose cumulative effects only are known. The vaccines currently in use in Europe and elsewhere are highly safe but it is anomalous that it is acceptable to allow their widespread dissemination while being seemingly over-cautious over the use of defined deletion mutants produced by genetic manipulation, but where each deletion is nevertheless known and characterised. The environmental issues associated with the genetic modification of plants and also some food animals which may escape to the wild, are very different issues to the use of deletion mutants, with no additional DNA added. One advantage of the current widespread application of these vaccines is that data will now accumulate on any reversion and other potential risks to man, target animals and the environment.

COLONISATION-INHIBITION

Vaccination is regarded as an essentially prophylactic measure whose protective effect begins after a period of maturation of the B- and T- cell response. Thus, after vaccination of one-day old chicks, production of significant amounts of specific antibody responses against *Salmonella* takes more than 10 days [Desmidt et al., 1998a]. For infections which may occur before this time, such as those arising from hatchery infection this window of susceptibility is too long. However, orally administered live *Salmonella* organisms can induce a very rapid form of protection early in the life of the bird as a result of their colonisation-inhibiting activity.

Colonisation-inhibition, or competitive exclusion, as it is more commonly known, can also be induced by the administration of normal gut flora preparations to newly hatched chicks. Young birds are highly susceptible to infection with *Salmonella*, as a consequence of the absence of a protective gut flora and immaturity of the immune system [Friedman et al., 2003; van der Wielen et al., 2000]. The first can be overcome by the application of competitive exclusion (CE) products based on cultures of normal flora obtained from pathogen-free adult birds [Nurmi & Rantala, 1973], which, according to the recommendation of the WHO, should be applied as early as possible to day-old chicks in the hatchery or by spraying eggs and in preference to administration via the first drinking water. However, treatment with undefined flora is not permitted in many countries due to the potential risk of transmission of pathogens, although this can be avoided by appropriate testing of the product. The use of undefined flora and probiotics to control *Salmonella* in poultry will not be covered in depth in this review.

Because of some of the concerns associated with the use of undefined CE products, studies were initiated in the 1980s to search for bacterial strains which possessed the colonisation characteristics of *Salmonella* but not their virulence attributes [Barrow & Tucker, 1986]. During this study one group of one-day-old chicks was found to be completely refractory to infection with the challenge *S. Typhimurium* strain. This was as a result of the fact that the birds had become infected with a strain of *S. Montevideo* from the feed soon after hatching. This strain, isolated from the birds and administered to a new batch of newly-hatched chicks
completely protected them against challenge 24 hours later with the *S. Typhimurium*. In fact, it was found that an attenuated rough mutant of the *S. Typhimurium* strain also prevented establishment and colonisation by the fully virulent, smooth parent strain [Barrow et al., 1987]. This effect was therefore studied further.

Initial studies revealed that the effect required live bacteria; killed preparations administered either orally or parenterally had no effect. The inhibition was, therefore not the result of a novel rapid immune response stimulated by bacterial antigens in the gut. Neither was it the result of bacteriophage activity. It was specific to related bacterial taxa. Thus strains of *E. coli*, *Citrobacter*, *Proteus* and other related bacteria had no effect against *Salmonella* but did inhibit colonisation by organisms from their own genera. Amongst the *Salmonellae*, not all strains were equally inhibitory. The mechanism was studied using an *in vitro* system of stationary-phase broth cultures [Barrow et al., 1987; Berchieri & Barrow, 1991]. However, the practical aspects of the effect were immediately apparent and warranted further investigation. This [Berchieri & Barrow, 1991; Martin et al., 2002] showed that the protective effect required high numbers of bacteria in the intestine and that as the normal flora began to develop the genus-specific exclusion reduced in efficacy. The effects were long lasting in terms of reduced faecal excretion and occurred in different chicken breeds, ducks [Barrow et al., 1999] and on different diets. The effect became apparent after 6 hours or so but only became fully effective after 18-24 hours. Some strains were more effective than others, although no strain was fully effective against all *Salmonella* strains [Martin et al., 2002; Iba et al., 1995] and there appeared to be a serovar-specific effect but how far this was related to clonality, rather than serovar specificity, remains unclear. The most profound level of inhibition *in vivo* occurred between isogenic strains. The fact that the challenge strains did not colonise also led to reduced invasion by them [Nogrady et al., 2003] and in the associated mortality (Barrow and Lovell, unpublished results). These data suggested that it might be possible to administer to newly-hatched chicks live vaccine strains such that they would colonise the gut extensively and rapidly before the normal flora became established, and that this should induce a profound resistance to colonisation by strains which may be present in the poultry house or may also have arisen in the hatchery. A search was made for a strain of *Salmonella* with a wide spectrum of inhibition, capable of preventing colonisation by an extensive selection of strains. A strain of *S. Infantis* [Berchieri & Barrow, 1990] and a strain of *S. Hadar* [Nogrady et al., 2003] were found to be more inhibitory than were other serovars. These serovars are characteristically poorly invasive but highly colonising [Desmidt et al., 1998a; Barrow et al., 1988] and it may be that this latter characteristic is related to the inhibitory activity, possibly through a wide variety of nutrients available to it (see mechanism of inhibition below).

Attenuated live *Salmonella* Typhimurium and Enteritidis vaccines with certain, metabolic pathway mutations [Cooper et al., 1994b; Vielitz et al., 1992; Hahn, 2000; Springer et al., 2000; Feberwee et al., 2001a; Meyer et al., 1993; Cooper et al., 1994a; Metner et al., 2001] or deletions in genes for *cya* and *crp* [Curtiss & Kelly, 1987] are immunogenic. However, it was also shown that these attenuated live *Salmonella* vaccines were generally not or only briefly able to inhibit intestinal colonisation of homologous or heterologous *Salmonella* challenge organisms [vanImmerseel et al., 2002c; Curtiss & Keely, 1987; Metner et al., 1997]. Thus, none of the currently available commercial live *Salmonella* vaccines is able to induce protection against *Salmonella* organisms by this exclusion or inhibition effect. There is therefore a need to identify live *Salmonella* strains which are sufficiently attenuated without affecting genes essential for colonisation inhibition. Recent studies confirmed not only the high level of attenuation of *Salmonella* strains with deletions in *phoP* but more importantly, demonstrated their colonisation-inhibition ability [Metner et al., 2004].
Similar colonisation inhibition effects were also observed in the intestines of gnotobiotic pigs [Lovell & Barrow, 1999] suggesting that this is a general phenomenon not restricted to chickens. The occurrence of competition between related bacteria and its use in infection prevention has, in fact, been known for many years, although in most cases there is no understanding of its basis. It has been demonstrated between strains of *E. coli* in gnotobiotic mice and new born infants [148] and between enterotoxigenic *E. coli* in pigs [Duval-Iflah et al., 1983; danidson & Hirsch, 1976]. Similar exclusion studies have been demonstrated between strains of *C. jejuni* [Barrow & Page, 2000] and work to determine whether the mechanism is similar in *Salmonella* and *Campylobacter* are underway.

The mechanism of colonisation-inhibition is also poorly understood, and although an early hypothesis arose from the observation that a similar inhibition could be demonstrated in stationary-phase nutrient broth cultures, interactions with the host, either by competition for sites of adhesion or through stimulation of the innate immune system, have by no means been discounted. Of these mechanistic explanations neither explains completely the colonisation-inhibition phenomenon, and both may be involved simultaneously.

The host response in colonisation-inhibition: a role for granulocytes?

From the above experimental studies there has been considerable argument as to how far the inhibitory effect was primarily a microbiological process or competition between related bacteria not involving a host response per se. However, other more recent studies have suggested that the host might be involved and have opened up further an area of infection-immune biology, which also has considerable practical consequences.

Since colonisation-inhibition is a process that rapidly induces resistance to infection, adaptive immune responses are thought not to play a significant role. It is known, however, that immune cells are attracted very rapidly to the infection site after infection of chickens with virulent and attenuated *Salmonella* strains [Kogut et al., 2003]. After oral immunization of newly hatched chickens with an attenuated *S. Enteritidis aroA*, immune cells are attracted to the caecal lamina propria in high numbers [vanImmerseel et al., 2002c]. These cells, comprising heterophilic granulocytes, macrophages, T-lymphocytes and to a lesser extent B-lymphocytes, infiltrate the caecal wall within 24 hours post-vaccination, when up to 25% of the caecal wall may be occupied by these cells at this time. It was considered that these cells might conceivably play a role in colonisation-inhibition, since the caeca are known to be the predominant site for colonisation and invasion by *Salmonella* in the chicken [Desmidt et al., 1997; Ib, 1998]. When birds were orally vaccinated with \(10^8\) cfu of the candidate vaccine strain *S. Enteritidis aroA CVL30* immediately post-hatch and subsequently challenged with the virulent homologous *S. Enteritidis* strain one day later, colonisation of liver and spleen was strongly reduced during the first 5 days post-infection. However, on day 10 after infection there were no differences in the number of challenge organisms in liver and spleen between vaccinated and non-vaccinated animals. The caecal colonisation by the challenge strain was only moderately suppressed in vaccinated birds compared to untreated controls [vanImmerseel et al., 2002c]. This suggested that this cellular infiltration was not likely to be the main cause of the colonisation-inhibition, although this was not conclusively proven, but it did, however, demonstrate an interesting potential protective effect against virulent *Salmonella* invasion soon after hatching. The same experiment was repeated in animals that were depleted of heterophilic granulocytes by the well-established model of 5-fluorouracil depletion [Kogut et al., 1994; vanImmerseel et al., 2003]. In this experiment the protection against colonisation of internal organs was completely lost, suggesting a central role for heterophilic granulocytes in protection against invasion and organ colonisation [vanImmerseel et al., 2003]. This is consistent with previous studies assessing the role of
heterophilic granulocytes in protection against organ colonisation by *Salmonella*. In this work, the extent of heterophilic granulocytic depletion was proportionately related to increases in the number of *Salmonella* in internal organs, and increasing the number of circulating heterophilic granulocytes following administration of cytokines derived from stimulated T-cells protected against organ colonisation by *Salmonella* [Foster et al., 2003; Kogut et al., 1994; Tellez et al., 1993b]. Much older work had also showed that live vaccines can stimulate, within hours of inoculation, a high degree of protective immunity against homologous and heterologous bacterial challenge [Smith, 1956; Maskell et al., 1987; Field et al., 1955; Wilson & Miles, 1964], presumably through activation/priming of the innate immune system, once thought to be primarily macrophages [Kodama et al., 1976], but perhaps more likely to be PMNs.

These data strongly suggest a role for heterophilic granulocytes in protection against internal organ colonisation by *Salmonella* in chickens and also suggest that this is inducible by oral inoculation with live, attenuated *Salmonella* vaccines. This has considerable practical potential for poultry. The bacterial factors that are responsible for this affect have not been fully elucidated (see above). Similar results have also been found in mammals. A strain of *S.* Infantis was found to have a wide spectrum of colonisation inhibition against different *Salmonella* strains in newly-hatched chicks [Berchieri & Barrow, 1990]. This strain was also tested in gnotobiotic pigs to determine whether it would be similarly inhibitory against other serovars in young milk-fed mammals. This was found not to be the case. Although the *S.* Infantis strain was completely avirulent for one-week-old pigs, it did not show colonisation-inhibition against a fully virulent *S.* Typhimurium strain. However, the pigs pre-inoculated with the *S.* Infantis and challenged with the *S.* Typhimurium remained perfectly healthy [Barrow et al., 1997], whereas pigs inoculated with the *S.* Typhimurium only developed severe enteritis requiring humane killing. Similar results were found with a second *S.* Typhimurium challenge strain and *S.* Choleraesuis and when the experiments were carried out in gnotobiotic calves [Foster et al., 2003]. Of the cell types studied, only polymorphonuclear cells were observed in high number in the villi of the gut in the vaccinated groups. A more detailed study of this effect [Foster et al., 2003] concluded that the *S.* Infantis strains was sufficiently invasive to induce infiltration of large numbers of primed neutrophil granulocytes into the intestinal mucosa, which themselves did not induce any pathological changes, but which were highly antibacterial to the virulent *S.* Typhimurium strain inoculated one day later. In this context, pre-inoculation with attenuated *Salmonella* may act similarly to commercially available Biostim [Roch-Arvellier et al., 1987]. Biostim is a glycoprotein derived from *Klebsiella pneumoniae* which has been shown to reduce the duration and rate of bacterial infection in the airways. The drug stimulates increased C3b and C3bi receptor expression in neutrophils [Capsoni et al., 1991], increases neutrophil phagocytic capacity [Minonzio et al., 1991] and increases neutrophil oxidative metabolism [Idohou et al., 1993].

These three mechanisms appear superficially to be separate and distinct phenomena, two microbiological and the other involving the innate immune system, but both with practical implications for the use of live vaccines in young animals, including poultry. As indicated above it may be that these effects may operate simultaneously. However, the obvious differences may conceal an common thread which merits further exploration, namely that during colonisation of the chicken caeca by *Salmonella*, these micro-organisms come into close contact with the mucosa, particularly in the region of the caecal tonsil. An assumption was made in early studies that intestinal colonisation was primarily a reflection of bacterial metabolism, of whether or not the bacteria involved were able to exploit the nutritional and other physiological conditions present in the gut [Turner et al., 1998]. There is increasing evidence that this is not the case and that an interaction between colonising bacteria and host is required as a component of colonisation, whether or not this leads to extensive invasion and
systemic disease. Colonisation inhibition may require all three mechanisms for full inhibition. The microbiological studies suggest establishment in the gut through appropriate metabolism and a failure to do this would prevent any interaction with the host, which may then take the form of a competition for adhesion sites or, where invasion takes place, involving heterophil activity, which may occur in or close to the lumen in the caecal tonsil. Thus, studies on these effects may also ultimately tell us a great deal about the mechanism of colonisation and the extent to which host-pathogen interactions may be involved in this aspect of infection which is central to food-poisoning.

References